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Motivation A Benchmark Dataset for Hour-Long Video-Language Understanding
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* Humans excel at comprehending visual stimuli over long
time horizons, enabling them to perceive, plan, and act. Summarization
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e Similarly, general-purpose Al systems require sustained Perception

visual processing capabilities.
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* Research Gap: Lack of systematic methods to
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C) Takes out the Ingredients, peels, cuts, and cooks the potatoes, _
HourVideo Generation Plpellne cools the potatoes with cold water, continues to mash them in the , Spatial

p0ot, and adjusts the cooker setting.
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