

Discovering Transferable Forensic Features for CNN-generated Images Detection

European Conference on Computer Vision (ECCV) 2022 Oral

Keshigeyan Chandrasegaran

Ngoc-Trung Tran

UNIVERSITY OF OSLO

Alexander Binder

Ngai-Man Cheung

Visual counterfeits are increasingly causing an existential conundrum in mainstream media

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Understanding Transferable Forensic Features

Color-Robust Detectors

With rapid improvements in generative modelling, detecting such counterfeits is increasingly becoming challenging and critical.

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Understanding Transferable Forensic Features

Color-Robust Detectors

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Transferable Forensic Features

Discovering Transferable Forensic Features

However, a recent class of forensic detectors known as *universal detectors* (Wang et al., 2020) can surprisingly spot counterfeits regardless of generator architectures, loss functions, datasets or resolutions.

Understanding Transferable Forensic Features

Color-Robust Detectors

This intriguing cross-model forensic transfer suggests the existence of Transferable Forensic Features (T-FF) in universal detectors.

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Transferable Forensic Features

Discovering Transferable Forensic Features

Understanding Transferable Forensic Features

Color-Robust Detectors

What *Transferable Forensic Features (T-FF)* are used by *universal detectors* for counterfeit detection?

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Transferable Forensic Features

Discovering Transferable Forensic Features

Understanding Transferable Forensic Features

Color-Robust Detectors

Our work conducts the *first* analytical study to *discover* & *understand* Transferable Forensic Features (T-FF) in universal detectors.

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Transferable Forensic Features

Discovering Transferable Forensic Features

Understanding Transferable Forensic Features

Color-Robust Detectors

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Transferable Forensic Features

Discovering Transferable Forensic Features

Understanding Transferable Forensic Features

Color-Robust Detectors

ProGAN

StyleGAN2

StyleGAN

Pixel-wise explanations of Universal Detector decisions using Guided-GradCAM (GGC) and LRP

Pixel-wise explanations of ImageNet Classifier decisions using Guided-GradCAM (GGC) and LRP

GGC

LRP

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Brock, A., Donahue, J., & Simonyan, K. (2018, September). Large Scale GAN Training for High Fidelity Natural Image Synthesis. In International Conference on Learning Representations. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision Bach S, Binder A, Montavon G, Klauschen F, Müller KR, et al. (2015) On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Laver-Wise Relevance Propagation. PLOS ONE 10(7): e0130140.

Transferable Forensic Features

Discovering Transferable Forensic Features

BigGAN

CycleGAN

 $p_{counterfeit} \ge 95\%$

for all these counterfeits

Explanations are random and do not reveal any meaningful visual features

This is a control experiment

Understanding Transferable Forensic Features

Color-Robust Detectors

ProGAN

StyleGAN2

StyleGAN

Pixel-wise explanations of Universal Detector decisions using Guided-GradCAM (GGC) and LRP

Pixel-wise explanations of ImageNet Classifier decisions using Guided-GradCAM (GGC) and LRP

GGC

LRP

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Brock, A., Donahue, J., & Simonyan, K. (2018, September). Large Scale GAN Training for High Fidelity Natural Image Synthesis. In International Conference on Learning Representations. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision Bach S, Binder A, Montavon G, Klauschen F, Müller KR, et al. (2015) On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Laver-Wise Relevance Propagation. PLOS ONE 10(7): e0130140.

Transferable Forensic Features

Discovering Transferable Forensic Features

BigGAN

CycleGAN

 $p_{counterfeit} \ge 95\%$ for all these counterfeits

> Explanations are random and do not reveal any meaningful visual features

MAN PH-M

This is a control experiment

Understanding Transferable Forensic Features

Color-Robust Detectors

ProGAN

Image

StyleGAN2

StyleGAN

Pixel-wise explanations of Universal Detector decisions using Guided-GradCAM (GGC) and LRP

Pixel-wise explanations of universal detector decisions are not informative to discover T-FF

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Brock, A., Donahue, J., & Simonyan, K. (2018, September). Large Scale GAN Training for High Fidelity Natural Image Synthesis. In International Conference on Learning Representations. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision Bach S, Binder A, Montavon G, Klauschen F, Müller KR, et al. (2015) On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLOS ONE 10(7): e0130140.

Transferable Forensic Features

Discovering Transferable Forensic Features

BigGAN

CycleGAN

 $p_{counterfeit} \ge 95\%$

for all these counterfeits

Explanations are random and do not reveal any meaningful visual features

This is a control experiment

Understanding Transferable Forensic Features

Color-Robust Detectors

We study the *Feature Space* of universal detectors

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Transferable Forensic Features

Discovering Transferable Forensic Features

Understanding Transferable Forensic Features

Color-Robust Detectors

Which feature maps in universal detectors are responsible for cross-model forensic transfer?

Transferable Forensic Features Discovering Transferable Forensic Features

Understanding Transferable Forensic Features

Color-Robust Detectors

Which feature maps in universal detectors are responsible for cross-model forensic transfer?

FF-RS (ω) is a scalar ([0,1]) that quantifies the forensic relevance of every feature map.

14

 $\boldsymbol{\omega}$ for a feature map quantifies

- Which feature maps in universal detectors are responsible for cross-model forensic transfer?
 - FF-RS (ω) is a scalar ([0,1]) that quantifies the forensic relevance of every feature map.
 - positive forensic relevance of the feature map total unsigned forensic relevance of the entire layer

15

 $\boldsymbol{\omega}$ for a feature map quantifies

Algorithm 1: Calculate FF-RS (ω) (Non-vectorized)

Input:

forensics detector M,

data $D = \{x\}_{i=1}^{n}$, D is a large counterfeit dataset where x_i indicates the i^{th} counterfeit image.

Output:

 $\omega(l_c)$ where l, c indicates the layer and channel index of forensic feature maps. Every forensic feature map can be characterized by a unique set of l, c.

Transferable Forensic Features

- Which feature maps in universal detectors are responsible for cross-model forensic transfer?
 - FF-RS (ω) is a scalar ([0,1]) that quantifies the forensic relevance of every feature map.
 - positive forensic relevance of the feature map total unsigned forensic relevance of the entire layer

- top-k : Set of *T*-*FF* (top-ranked feature maps based on ω values)
- random-k : Set of random feature maps used as a control experiment
- : Set of low-ranked feature maps with very small ω values low-k

17

- : Set of *T*-*FF* (top-ranked feature maps based on ω values) top-k
- random-k : Set of random feature maps used as a control experiment
- : Set of low-ranked feature maps with very small ω values low-k

Feature map dropout is performed by suppressing (zeroing out) the resulting activations of corresponding feature maps

: Set of *T*-*FF* (top-ranked feature maps based on ω values) top-k

random-k : Set of random feature maps used as a control experiment

: Set of low-ranked feature maps with very small ω values low-k

				_									-		-					
AP / Acc	F	ProGA	N	S	tyleGAN	N2	St	yleGA	Ν	F	BigGA	N		ycleGA	N	S	tarGA	N	C	JauG
k = 114	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Rea
baseline	100.0	100.0	100.0	99.1	95.5	95.0	99.3	96.0	95.6	90.4	83.9	85.1	97.9	93.4	92.6	97.5	94.0	89.3	98.8	93.9
top-k	69.8	99.4	3.2	55.3	89.4	11.3	56.6	90.6	13.7	55.4	86.4	18.3	61.2	91.4	17.4	72.6	89.4	35.9	71.0	95.0
random-k	100.0	99.9	96.1	98.6	89.4	96.9	98.7	91.4	96.1	88.0	79.4	85.1	96.6	81.0	96.2	97.0	88.0	91.7	98.7	91.9
low-k	100.0	100.0	100.0	99.1	95.6	95.0	99.3	96.0	95.6	90.4	83.9	85.1	97.9	93.4	92.6	97.5	94.0	89.3	98.8	93.9

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Brock, A., Donahue, J., & Simonyan, K. (2018, September). Large Scale GAN Training for High Fidelity Natural Image Synthesis. In International Conference on Learning Representations. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision Choi, Y., Choi, M., Kim, M., Ha, J. W., Kim, S., & Choo, J. (2018). Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE conference on computer vision and pattern recognition Park, T., Liu, M. Y., Wang, T. C., & Zhu, J. Y. (2019). Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Transferable Forensic Features Discovering Transferable Forensic Features

Feature map dropout is performed by suppressing (zeroing out) the resulting activations of corresponding feature maps

ResNet-50 feature map dropout results (Sensitivity assessments)

Understanding Transferable Forensic Features

Color-Robust Detectors

: Set of *T*-*FF* (top-ranked feature maps based on ω values) top-k

random-k : Set of random feature maps used as a control experiment

: Set of low-ranked feature maps with very small ω values low-k

<i>k</i> = 114	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Rea
baseline	100.0	100.0	100.0	99.1	95.5	95.0	99.3	96.0	95.6	90.4	83.9	85.1	97.9	93.4	92.6	97.5	94.0	89.3	98.8	93.9
top-k	69.8	99.4	3.2	55.3	89.4	11.3	56.6	90.6	13.7	55.4	86.4	18.3	61.2	91.4	17.4	72.6	89.4	35.9	71.0	95.0
random-k	100.0	99.9	96.1	98.6	89.4	96.9	98.7	91.4	96.1	88.0	79.4	85.1	96.6	81.0	96.2	97.0	88.0	91.7	98.7	91.9
low-k	100.0	100.0	100.0	99.1	95.6	95.0	99.3	96.0	95.6	90.4	83.9	85.1	97.9	93.4	92.6	97.5	94.0	89.3	98.8	93.9

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Brock, A., Donahue, J., & Simonyan, K. (2018, September). Large Scale GAN Training for High Fidelity Natural Image Synthesis. In International Conference on Learning Representations. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision Choi, Y., Choi, M., Kim, M., Ha, J. W., Kim, S., & Choo, J. (2018). Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE conference on computer vision and pattern recognition Park, T., Liu, M. Y., Wang, T. C., & Zhu, J. Y. (2019). Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Discovering Transferable Forensic Features Transferable Forensic Features

Feature map dropout is performed by suppressing (zeroing out) the resulting activations of corresponding feature maps

FF-RS (ω) successfully quantifies and discovers *T*-*FF*

Understanding Transferable Forensic Features

Color-Robust Detectors

What *counterfeit properties* are detected by this set of *T-FF* discovered using *FF-RS*?

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018) Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations. Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Transferable Forensic Features

Discovering Transferable Forensic Features

Understanding Transferable Forensic Features

Color-Robust Detectors

We introduce a novel pixel-wise visualization method -LRP-max - for visualizing which pixels in the input space correspond to maximum spatial relevance scores for each *T*-*FF*.

Principal idea : Instead of back-propagating using detector logits, back-propagate from the maximum spatial relevance neuron for each *T*-*FF* independently.

What *counterfeit properties* are detected by this set of *T*-*FF*?

Algorithm 2: Obtain LRP-max pixel-wise explanations (For a single feature map, for a single sample)

forensics detector M,

counterfeit image x where $x.size() = (3, x_{height}, x_{width}),$

forensic feature map l, c where l, c indicate layer and channel index respectively.

 $\hat{E}_{l_c}(x)$ where E indicates the LRP-max pixel-wise explanations for sample x corresponding to forensic feature map at layer index l and channel index c. Do note that $\hat{E}_{l_c}(x).size()$ is (x_{height}, x_{width}) .

Every forensic feature map can be characterized by a unique set of l, c. 1 $z_{l_c}(x) \leftarrow LRP - FORWARD(M_{l_c}(x_i))$; /*(h, w) relevance scores*/ 2 $h^*, w^* \leftarrow argmax(z_{l_c}(x))$; /*find index of max relevance*/ 3 $z_{l_c}^{max}(x) \leftarrow z_{l_c}(x)[h^*, w^*]$; /*LRP-max response neuron*/ 4 $E_{l_c}(x) \leftarrow LRP - BACKWARD(z_{l_c}^{max}(x))$; /*explain LRP-max neuron*/ **5** $\hat{E}_{l_c}(x) \leftarrow \sum_{k=0}^{3} (E_{l_c}(x)(k, x_{height}, x_{width}));$ /*spatial LRP-max*/ 6 return $\hat{E}_{l_c}(x)$

Color is a critical T-FF (Qualitative Studies)

We introduce a novel pixel-wise visualization method — LRP-max — for visualizing which pixels in the input space correspond to maximum spatial relevance scores for each *T-FF*.

Principal idea : Instead of back-propagating using detector logits, back-propagate from the maximum spatial relevance neuron for each *T-FF* independently.

Transferable Forensic Features > Dis

Understanding Transferable Forensic Features

> Color-Robust Detectors

Color is a critical *T-FF* (Qualitative Studies)

We introduce a novel pixel-wise visualization method -LRP-max - for visualizing which pixels in the input space correspond to maximum spatial relevance scores for each *T*-*FF*.

Principal idea : Instead of back-propagating using detector logits, back-propagate from the maximum spatial relevance neuron for each *T*-*FF* independently.

We qualitatively show that color is a critical *T*-*FF* in universal detectors for cross-model forensic transfer

Transferable Forensic Features

Understanding Transferable Forensic Features

Color-Robust Detectors

Color is a critical *T-FF* (Quantitative Studies)

Median Counterfeit Probability Analysis based on Color Ablation

We study the change in median counterfeit probability when removing color information (grayscale) from counterfeits.

 $p_{counterfeit} = 0.97$ $p_{counterfeit} = 0.96$ $p_{counterfeit} = 0.97$ $p_{counterfeit} = 0.95$

 $p_{counterfeit} = ?$

 $p_{counterfeit} = ?$

 $p_{counterfeit} = ?$

 $p_{counterfeit} = ?$

Understanding Transferable Forensic Features

Color-Robust Detectors

Color is a critical *T-FF* (Quantitative Studies I)

Median Counterfeit Probability Analysis based on Color Ablation

Color ablation causes the median probability predicted by universal detector to drop by > 89% across all unseen GANs

Color is a critical *T-FF* (Quantitative Studies II)

Median Counterfeit Probability Analysis based on Color Ablation

Color ablation causes the median probability predicted by universal detector to drop by > 89% across all unseen GANs

% Color-conditional T-FF (Mood's median test) based on maximum spatial activation distributions

% Color-conditional	ProGAN	StyleGAN2	StyleGAN	BigGAN	CycleGAN	StarGAN	GauGAN
ResNet-50	?	?	?	?	?	?	?

Color is a critical *T-FF* (Quantitative Studies II)

Median Counterfeit Probability Analysis based on Color Ablation

Color ablation causes the median probability predicted by universal detector to drop by > 89% across all unseen GANs

% Color-conditional T-FF (Mood's median test) based on maximum spatial activation distributions

% Color-conditional	ProGAN	StyleGAN2	StyleGAN	BigGAN	CycleGAN	StarGAN	GauGAN
ResNet-50	85.1	74.6	73.7	68.4	86.8	71.1	70.2

Color is a critical *T-FF* (Quantitative Studies)

Median Counterfeit Probability Analysis based on Color Ablation

We quantitatively show that color is a critical *T*-*FF* in universal detectors for cross-model forensic transfer

 $p_{counterfeit} = 0.97$ $p_{counterfeit} = 0.95$ $p_{counterfeit} = 0.04$ $p_{counterfeit} = 0.96$ $p_{counterfeit} = 0.97$ $p_{counterfeit} = 0.10$ $p_{counterfeit} = 0.00$

% Color-conditional T-FF (Mood's median test) based on maximum spatial activation distributions

% Color-conditional	ProGAN	StyleGAN2	StyleGAN	BigGAN	CycleGAN	StarGAN	GauGAN
ResNet-50	85.1	74.6	73.7	68.4	86.8	71.1	70.2

$p_{counterfeit} = 0.01$

Applications : Color-Robust (CR) Universal Detectors

Idea : Randomly remove color information from samples during training (both real and counterfeits) to manoeuvre detectors to learn *T-FF* that do not substantially rely on color information (Random Grayscaling).

% Color-conditional *T-FF* (Mood's median test) based on maximum spatial activation distributions

% Color-conditional	ProGAN	StyleGAN2	StyleGAN	BigGAN	CycleGAN	StarGAN	GauGAN
ResNet-50	85.1	74.6	73.7	68.4	86.8	71.1	70.2
CR-ResNet-50	55.3	33.3	48.2	31.6	56.1	48.2	39.5

CR Detector

We propose a novel Forensic Feature Relevance Statistic (FF-RS) to quantify & discover Transferable Forensic Features (*T-FF*) in universal detectors for counterfeit detection.

Transferable Forensic Features Discovering Transferable Forensic Features

Key Takeaways

Understanding Transferable Forensic Features

Color-Robust Detectors

We propose a novel Forensic Feature Relevance Statistic (FF-RS) to quantify & discover Transferable Forensic Features (*T-FF*) in universal detectors for counterfeit detection.

We qualitatively and quantitatively show that color is a critical Transferable Forensic Feature (*T-FF*) in universal detectors for counterfeit detection

Key Takeaways

We propose a novel Forensic Feature Relevance Statistic (FF-RS) to quantify & discover Transferable Forensic Features (*T-FF*) in universal detectors for counterfeit detection.

We qualitatively and quantitatively show that color is a critical Transferable Forensic Feature (*T-FF*) in universal detectors for counterfeit detection

Based on our findings, we propose a simple data augmentation scheme to train Color-Robust (CR) universal detectors

Code / Pre-trained models

Key Takeaways

