

Revisiting Label Smoothing and Knowledge Distillation Compatibility: What was Missing?

Introduction

Background: This work investigates the compatibility between Label Smoothing (LS) and Knowledge Distillation (KD). Contemporary works studying this thesis statement take contradictory standpoints.

Does LS in a teacher network suppress the effectiveness of KD? Müller et al. (2019) : • "If a teacher network is trained with label smoothing, knowledge distillation into a student network is much less effective." • "Label smoothing can hurt distillation."

Shen et al. (2021) : • "Label smoothing will not impair the predictive performance of students." • "Label smoothing is compatible with knowledge distillation."

Our Contributions: Our contributions are the discovery, analysis and validation of systematic diffusion as the missing concept which is instrumental in understanding / resolving these contradictory findings.

Systematic Diffusion in Student : In the presence of an LS-trained teacher, KD at higher temperatures systematically diffuses penultimate layer representations learnt by the student towards semantically similar classes. This systematic diffusion essentially curtails the distance enlargement benefits of distilling from a LS-trained teacher, thereby rendering KD at increased temperatures ineffective.

We show this systematic diffusion qualitatively by visualizing penultimate layer representations, and quantitatively using our proposed relative distance metric called diffusion index (η).

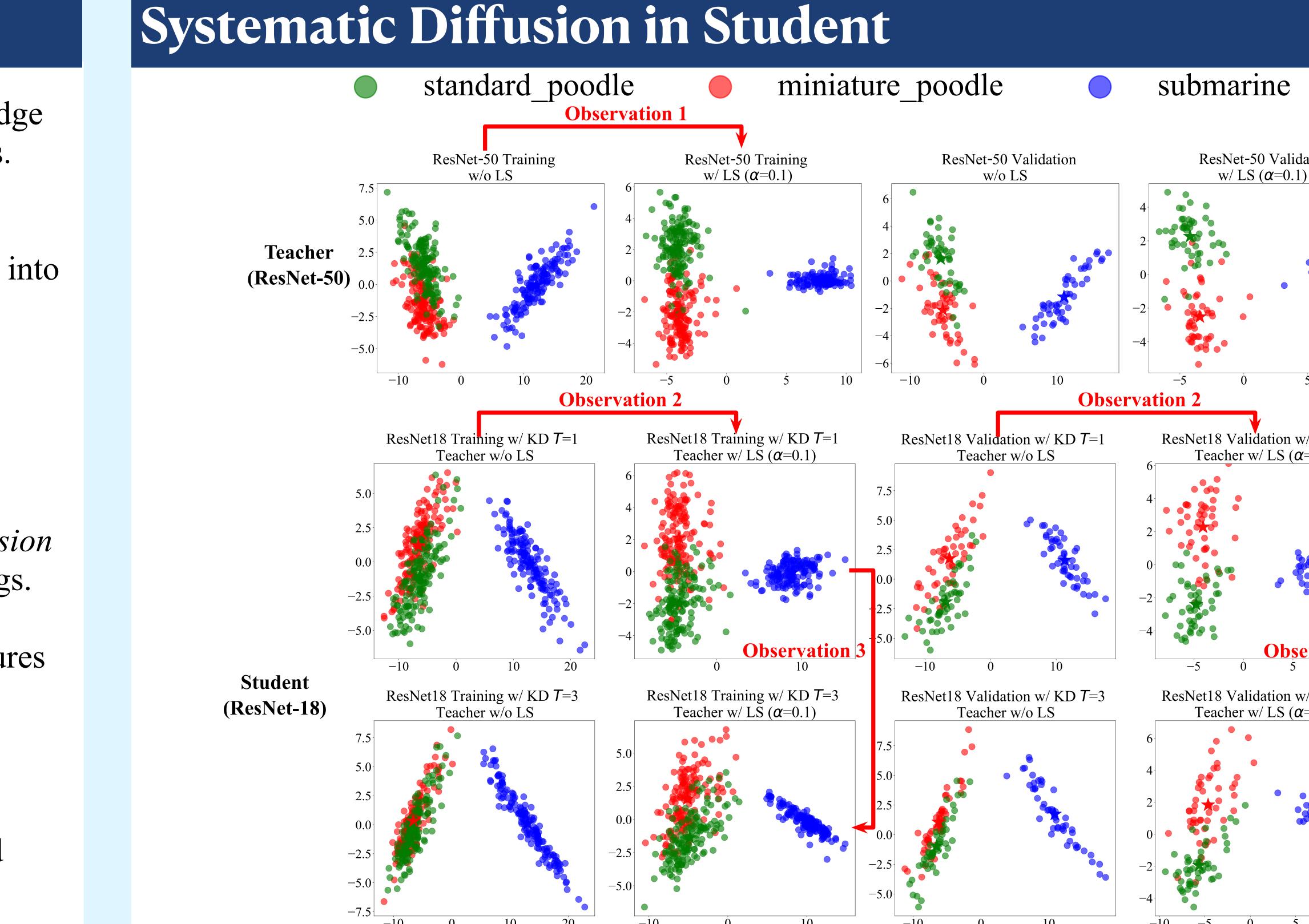
Our Main Findings on LS and KD Compatibility

		Information Erasure (Incompatibility)	Distance enlargement (compatibility)	Systematic Diffusion (Incompatibility)	Conclusion
Müller	et al. 2019	LS erases relative information in the logits			LS-trained teacher can hurt KD
Shen e	et al. 2021	With LS, some relative information in the logits is still retained	LS enlarges the distance between semantically similar classes		Benefits outweigh disadvantages. LS is compatible with KD.
Our	Lower T (i.e.: $T = 1$)	We agree with Shen et al., 2021 in information erasure	We validate the inheritance of distance enlargement in the student (Not shown in prior works)	With KD of lower <i>T</i> (i.e.: <i>T</i> =1), there is lower degree of systematic diffusion. This doesn't curtail the distance enlargement benefit.	At lower levels of systematic diffusion in student, LS is compatible with KD
work	Increase of <i>T</i>	The loss of logits relative information cannot be recovered with an increased <i>T</i>	We agree with Shen et al., 2021 observation, but the distance enlargement is curtailed at an increased <i>T</i> .	With KD of increased <i>T</i> , there is systematic diffusion of penultimate representations towards semantically similar classes, curtailing the distance enlargement benefits.	At higher levels of systematic diffusion in student, LS and KD are not compatible.

Keshigeyan Chandrasegaran, Ngoc-Trung Tran *, Yunqing Zhao *, Ngai-Man Cheung

{ keshigeyan, ngaiman_cheung }@sutd.edu.sg

Singapore University of Technology and Design (SUTD)



Visualization of the penultimate layer representations (Teacher=ResNet-50, Student=ResNet-18, Dataset=ImageNet-1K). We follow previous works and use three-class analysis: two semantically similar classes (standard poole, miniature poole) and one semantically dissimilar class (submarine).

Main Observations

Observation 1: The use of LS on the teacher leads to tighter clusters and erasure of logits' information as claimed by Müller et. Al (2019). In addition, increase in central distance between semantically similar classes (standard poodle, **miniature poodle**) as claimed by Shen et al. (2021) can be observed.

Observation 2: We further visualize the student's representations. Increase in central distance between semantically similar classes can also be observed. This confirms the transfer of this benefit from the teacher to the student.

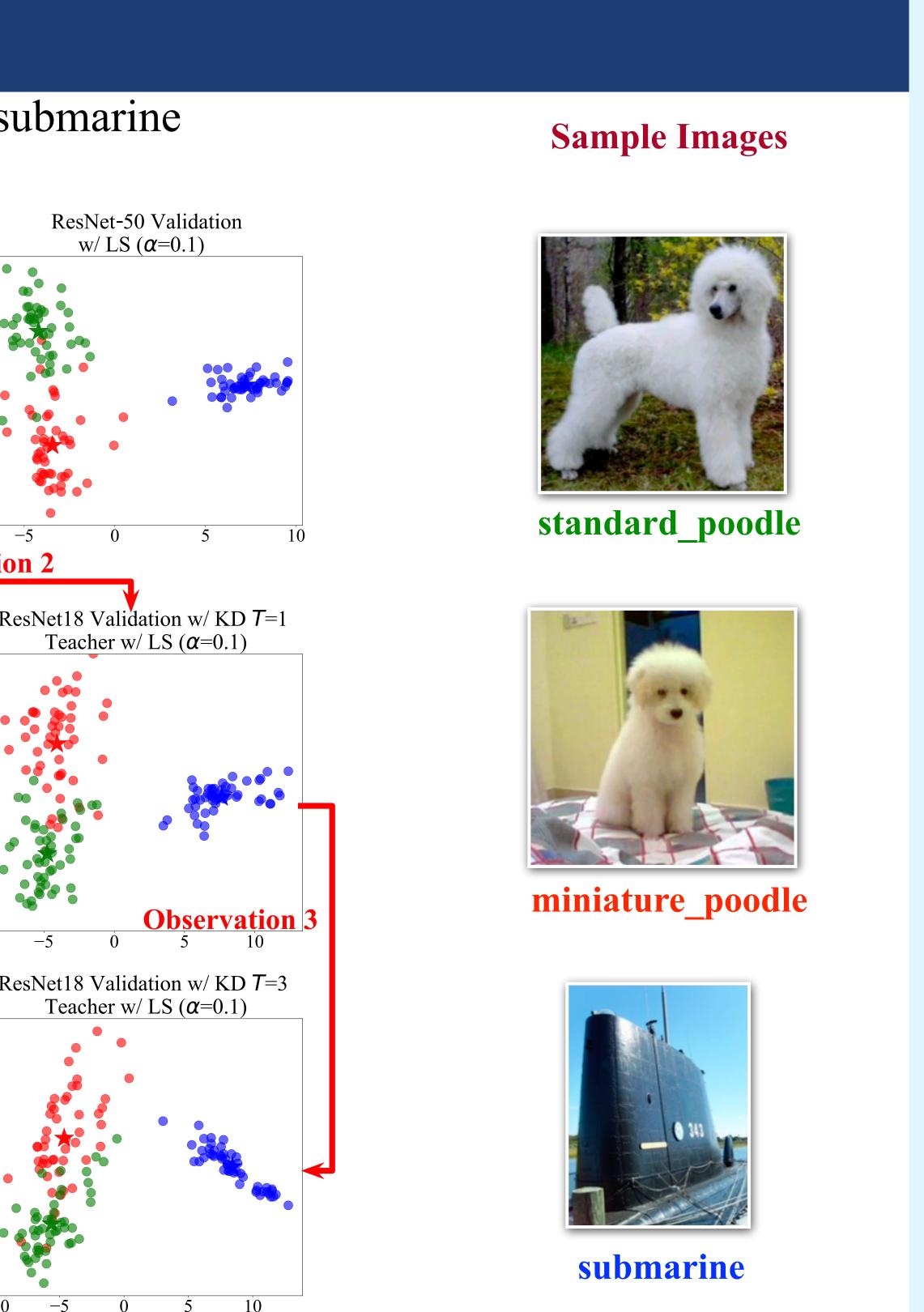
Observation 3 (Our main discovery): KD at an increased T causes systematic diffusion of representations between semantically similar classes (standard poodle, miniature poodle). This curtails the central distance enlargement benefits between semantically similar classes due to the use of an LS-trained teacher.

Quantifying Systematic Diffusion: n measurements

The principal idea of this metric is to quantify the distance change between clusters in the student when distilled from an LS-trained teacher at higher T

See Section 4 in Paper for more details

Set	t 1 : ResNet	-18 student	Set 2 : ResNet-18 student						
Target class	$Train: S_1$	$Train: S_2$	$Val: S_1$	$Val:S_2$	Target class	$Train: S_1$	$Train: S_2$	$Val: S_1$	Va
Chesapeake Bay retriever	-0.392	0.162	-1.082	0.269	thunder snake	-2.316	0.376	-3.584	0.
curly-coated retriever	-0.578	0.179	-2.024	0.383	ringneck snake	-0.463	0.058	-0.757	0.
flat-coated retriever	-1.729	0.380	-3.320	0.655	hognose snake	-1.528	0.258	-4.067	0.
golden retriever	-0.880	0.228	-2.594	0.555	water snake	-2.028	0.326	-3.053	0.4
Labrador retriever	-2.758	0.501	-4.618	0.840	king snake	-2.474	0.521	-4.577	0.8
Se	t 1 : ResNet	-50 student	Set 2 : ResNet-50 student						
Target class	Target class	$Train: S_1$	$Train: S_2$	$Val: S_1$	Va				
Chesapeake_Bay_retriever	-1.061	0.180	-1.346	0.240	thunder snake	-2.565	0.417	-0.778	0.
curly-coated_retriever	-0.764	0.127	-1.193	0.207	ringneck snake	-2.224	0.358	-0.726	0.
flat-coated_retriever	-0.983	0.169	-0.331	0.056	hognose snake	-3.748	0.623	-2.173	0.
golden_retriever	-0.744	0.159	-0.911	0.182	water snake	-1.631	0.258	-0.390	0.
Labrado_retriever	-1.336	0.236	-1.468	0.257	king snake ²	-1.969	0.339	0.956	-0



Main Experiments

	nage Classification (Image 50 to ResNet-18, ResNet-50		Fine-grained Image Classification (CUB200-2011) ResNet-50 to ResNet-18, ResNet-50 KD					
	$\boxed{\begin{array}{c} \alpha \\ T \end{array}} \qquad \alpha = 0.0$	$\alpha = 0.1$		$\boxed{\begin{array}{c} \alpha \\ T \end{array}}$	$\alpha = 0.0$	$\alpha = 0.1$		
Teacher : ResNet-50	- 76.130/92.862	76.196/93.078	Teacher : ResNet-50	–	81.584 / 95.927	82.068 / 96.168		
	T = 1 71.547 / 90.297	71.616 / 90.233		$\mid T = 1 \mid$	80.169 / 95.392	80.946 / 95.312		
Student : ResNet-18	T = 2 71.349 / 90.359	68.428 / 89.139	Student : ResNet-18	T = 2	80.808 / 95.593	80.428/95.518		
	T = 3 69.570 / 89.657	66.570 / 88.631		T = 3	80.785 / 95.674	78.196/95.213		
	T = 64 66.230 / 88.730	65.472/89.564		T = 64	73.611 / 94.529	67.161/93.062		
	T = 1 76.502 / 93.059	77.035 / 93.327		$\mid T = 1 \mid$	82.902 / 96.358	83.742/96.778		
Student : ResNet-50	T = 2 76.198 / 92.987	76.101/93.115	Student : ResNet-50	T = 2	82.534 / 96.427	83.379 / 96.537		
	T = 3 75.388 / 92.676	75.821/93.065		T = 3	82.091 / 96.243	82.142 / 96.427		
	T = 64 74.291 / 92.399	74.627 / 92.639		T = 64	79.784 / 95.927	77.206 / 95.812		

Extended Experiments

Compact Studer ResNet		illation (CUE MobileNet-V		Neural Machine Translation (IWSLT, English -> Gerr Transformer to Transformer					Germa
	$\begin{array}{ c c } \alpha \\ T \\ \end{array}$	$\alpha = 0.0$	$\alpha = 0.1$			$\begin{array}{ c c } \alpha \\ T \end{array}$	$\alpha = 0.0$	$\alpha = 0.1$	
Teacher : ResNet-50	_	81.584 / 95.927	82.068 / 96.168	Teach	er : Transformer	-	26.461	26.750	
	T = 1	81.144 / 95.677	81.731 / 95.754			$\mid T = 1$	24.914	25.085	
Student : MobileNet-V2	T = 2	81.895 / 95.858	80.609 / 95.47	Studen	Student : Transformer	T = 2	23.103	23.421	
	T = 3	81.257 / 95.677	78.961 / 95.306			T = 3	21.999	22.076	
	<i>T</i> = 64	75.441 / 94.702	70.435 / 93.494			T = 64	6.564	6.461	

Key Takeaways

Systematic Diffusion in Student: In the presence of an LS-trained teacher, KD at higher temperatures systematically diffuses penultimate layer representations learnt by the student towards semantically similar classes. This systematic diffusion essentially curtails the benefits of distilling from an LS-trained teacher, thereby rendering KD at increased temperatures ineffective.

Our discovery on systematic diffusion was the missing concept that is instrumental in resolving the contradictory findings of Müller et al. 2019 and Shen et al. 2021, thereby establishing a foundational understanding on the compatibility between LS and KD.

A rule of thumb for practitioners: We suggest using an LS-trained teacher with a low-temperature transfer (i.e., T = 1) to render high performance students.

We show top1 / top5 accuracies for Image classification (standard, fine-grained) KD experiments

References

Müller, R., Kornblith, S., & Hinton, G E. (2019). When does label smoothing help?. Advances in neural information processing systems, 32.

Shen, Z., Liu, Z., Xu, D., Chen, Z., Cheng, K. T., & Savvides, M. (2021). Is Label Smoothing Truly Incompatible with Knowledge Distillation: An Empirical Study. In ICLR

Code & Pre-trained Models

