

Revisiting Label Smoothing & Knowledge Distillation Compatibility: What was Missing?

International Conference on Machine Learning (ICML) 2022

Keshigeyan Chandrasegaran

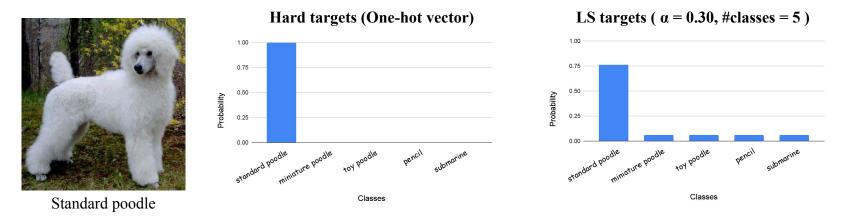
Ngoc-Trung Tran *

Yunqing Zhao *

Ngai-Man Cheung

Label Smoothing (LS)

Label Smoothing (LS) (Szegedy et al., 2016) was originally formulated as a regularization strategy to alleviate models' overconfidence.



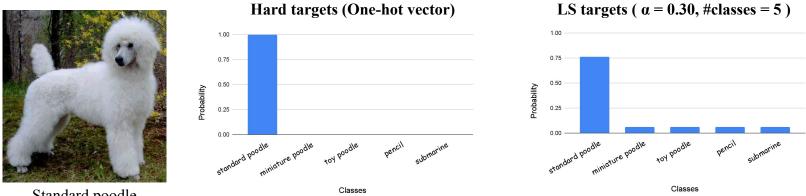
LS replaces original hard target distribution by a mixture of original hard target distribution and the uniform distribution (characterized by a mixture parameter α).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. CVPR

Systematic Diffusion in Student

Label Smoothing (LS)

Label Smoothing (LS) (Szegedy et al., 2016) was originally formulated as a regularization strategy to alleviate models' overconfidence.



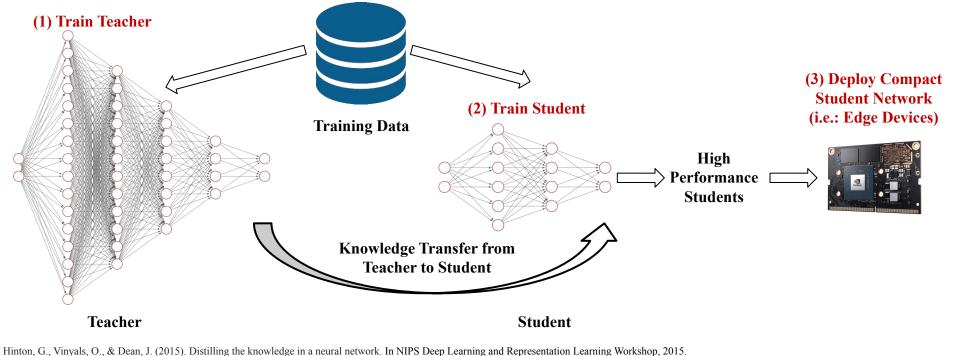
Standard poodle

Practically used in many tasks including image classification (He et al., 2019), NLP (Vaswani et al., 2017) and speech recognition (Chiu et al., 2018).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. CVPR
He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., & Li, M. (2019). Bag of tricks for image classification with convolutional neural networks. CVPR
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, *30*.
Chiu, C. C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., ... & Bacchiani, M. (2018, April). State-of-the-art speech recognition with sequence-to-sequence models. In *2018 IEEE ICASSP*

Knowledge Distillation (KD)

Knowledge Distillation (KD) (Hinton et al., 2015) uses a larger capacity teacher model/ ensemble of teacher models to transfer knowledge to a compact student model.



LS and KD > Should you sm

Should you smooth a teacher?

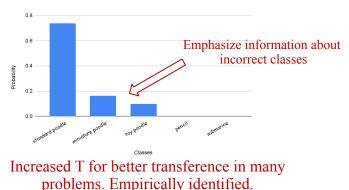
Systematic Diffusion in Student

Knowledge Distillation (KD)

0.75 0.50 0.25 0.00 torothete provide roy poulle roy poulle reprovide roy coulle roy

Teacher Output (T = 1)

T = 2 for transference



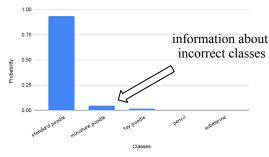
In KD, a temperature *T* is used to facilitate the transference: an increased *T* may produce more suitable soft targets that have more emphasis on the probabilities of incorrect classes

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. In NIPS Deep Learning and Representation Learning Workshop, 2015.

Systematic Diffusion in Student

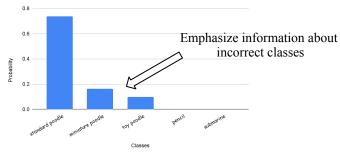
Knowledge Distillation (KD)

Standard poodle



Teacher Output (T = 1)

T = 2 for transference



Increased T for better transference in many problems. Empirically identified.

KD methods have been widely used in visual recognition (Peng et al., 2019), NLP (Hu et al., 2018), speech recognition (Perez et al., 2020), self-supervised learning (Fang et al., 2020) and neural architecture search (Wang et al., 2021).

Z. Peng, Z. Li, J. Zhang, Y. Li, G. -J. Qi and J. Tang, "Few-Shot Image Recognition With Knowledge Transfer," ICCV 2019
Hu, M., Peng, Y., Wei, F., Huang, Z., Li, D., Yang, N., & Zhou, M. (2018, January). Attention-Guided Answer Distillation for Machine Reading Comprehension. In *EMNLP*.
Perez, A., Sanguineti, V., Morerio, P., & Murino, V. (2020). Audio-visual model distillation using acoustic images. WACV
Fang, Z., Wang, J., Wang, L., Zhang, L., Yang, Y., & Liu, Z. (2020, September). SEED: Self-supervised Distillation For Visual Representation. In *ICLR*.
Wang, D., Gong, C., Li, M., Liu, Q., & Chandra, V. (2021, July). AlphaNet: improved training of supernets with alpha-divergence. In ICML. PMLR.

LS and KD Compatibility

Does LS in a teacher network suppress the effectiveness of KD?

LS and KD Compatibility

Does LS in a teacher network suppress the effectiveness of KD?

"If a teacher network is trained with label smoothing, knowledge distillation into a student network is much less effective."

"Label smoothing can hurt distillation"

[Müller et al., 2019]

LS and KD Compatibility

Does LS in a teacher network suppress the effectiveness of KD?

"If a teacher network is trained with label smoothing, knowledge distillation into a student network is much less effective."

"Label smoothing can hurt distillation"

[Müller et al., 2019]

"Label smoothing will not impair the predictive performance of students." "Label smoothing is compatible with knowledge distillation" [Shen et al., 2021]

LS and KD Compatibility : Research Gap

	Information Erasure (Incompatibility)	Distance enlargement (compatibility)	Conclusion
Müller et al. 2019	LS erases relative information in the logits		LS-trained teacher can hurt KD
Shen et al. 2021	With LS, some relative information in the logits is still retained	LS enlarges the distance between semantically similar classes	Benefits outweigh disadvantages. LS is compatible with KD.

Studied in isolation, both these contradictory arguments are convincing and supported empirically, although the later does not address the contradictory findings / results of Müller et al. (2019)

Müller, R., Kornblith, S., & Hinton, G. E. (2019). When does label smoothing help?. Advances in neural information processing systems, 32.

Shen, Z., Liu, Z., Xu, D., Chen, Z., Cheng, K. T., & Savvides, M. (2021). Is Label Smoothing Truly Incompatible with Knowledge Distillation: An Empirical Study. In ICLR

LS and KD Compatibility : Research Gap

	Information Erasure (Incompatibility)	Distance enlargement (compatibility)	Conclusion
Müller et al. 2019	LS erases relative information in the logits		LS-trained teacher can hurt KD
Shen et al. 2021	With LS, some relative	LS enlarges the distance	Benefits outweigh

Should you smooth a teacher network? THIS REMAINS UNCLEAR!

supported empirically, although the later does not address the contradictory findings / results of Müller et al. (2019)

Does LS in a teacher network suppress the effectiveness of KD?

Does LS in a teacher network suppress the effectiveness of KD?

• Our contributions are the discovery, analysis and validation of systematic diffusion as the missing concept which is instrumental in resolving these contradictory findings.

Does LS in a teacher network suppress the effectiveness of KD?

- Our contributions are the discovery, analysis and validation of systematic diffusion as the missing concept which is instrumental in resolving these contradictory findings.
- We conduct large-scale experiments including image classification, neural machine translation and compact student distillation tasks spanning across multiple datasets and teacher-student architectures to qualitatively / quantitatively show Systematic Diffusion.

Does LS in a teacher network suppress the effectiveness of KD?

- Our contributions are the discovery, analysis and validation of systematic diffusion as the missing concept which is instrumental in resolving these contradictory findings.
- We conduct large-scale experiments including image classification, neural machine translation and compact student distillation tasks spanning across multiple datasets and teacher-student architectures to qualitatively / quantitatively show Systematic Diffusion.
- As a rule of thumb, we suggest practitioners to use an LS-trained teacher with a low-temperature transfer (i.e., T = 1) to render high performance students.

Revisiting LS and KD Compatibility: Systematic Diffusion in Student

• We discover that in the presence of an LS-trained teacher, KD at higher *T* systematically diffuses penultimate layer representations learnt by the student towards semantically similar classes.

Revisiting LS and KD Compatibility: Systematic Diffusion in Student

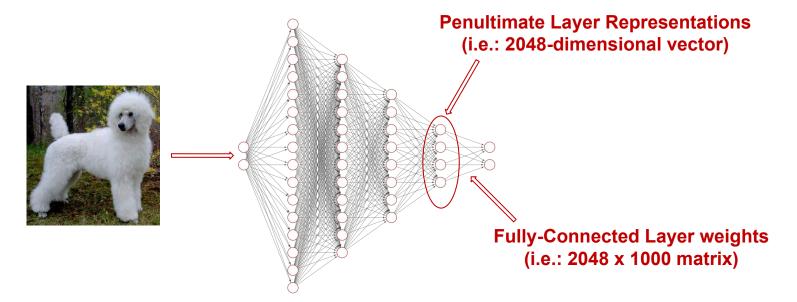
- We discover that in the presence of an LS-trained teacher, KD at higher *T* systematically diffuses penultimate layer representations learnt by the student towards semantically similar classes.
- This systematic diffusion is critical as it directly curtails the distance enlargement benefits between semantically similar classes when distilling from an LS-trained teacher

Revisiting LS and KD Compatibility: Systematic Diffusion in Student

- We discover that in the presence of an LS-trained teacher, KD at higher *T* systematically diffuses penultimate layer representations learnt by the student towards semantically similar classes.
- This systematic diffusion is critical as it directly curtails the distance enlargement benefits between semantically similar classes when distilling from an LS-trained teacher
- Therefore, in the presence of an LS-trained teacher, KD at increased temperatures is rendered ineffective.

Penultimate Layer Visualization to demonstrate Systematic Diffusion

We use linear projections of the Penultimate Layer Representations (Müller et al., 2019) to qualitatively demonstrate Systematic Diffusion.



Müller, R., Kornblith, S., & Hinton, G. E. (2019). When does label smoothing help?. Advances in neural information processing systems, 32.

Systematic Diffusion using three-class analysis

Standard poodle

Target class

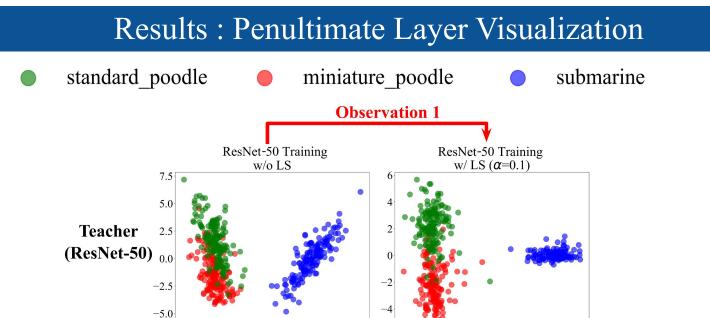
Miniature poodle

Submarine

Semantically similar class

Semantically dissimilar class

We follow experiment setups of Müller et al., 2019 and Shen et al., 2021



20

Standard poolle

Miniature poodle

Submarine

Observation 1: The use of LS on the teacher leads to tighter clusters which shows information erasure in logits'. Information about resemblances to instances of different classes is essential for KD (Müller et al., 2019) \rightarrow LS and KD Incompatibility

10

Müller, R., Kornblith, S., & Hinton, G. E. (2019). When does label smoothing help?. Advances in neural information processing systems, 32. Shen, Z., Liu, Z., Xu, D., Chen, Z., Cheng, K. T., & Savvides, M. (2021). Is Label Smoothing Truly Incompatible with Knowledge Distillation: An Empirical Study. In ICLR

10

Should you smooth a teacher?

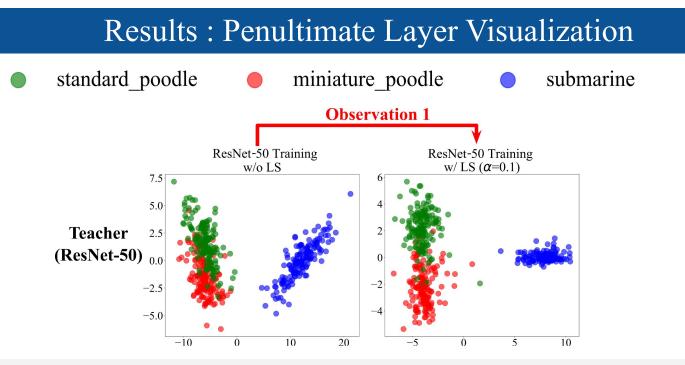
-10

Systematic Diffusion in Student

-5

Ó

5



Standard poodle

Miniature poodle

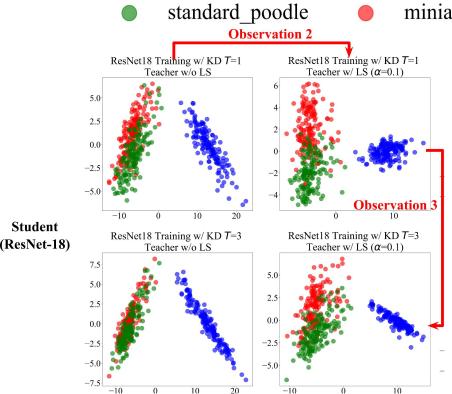
Submarine

Observation 1: Increase in central cluster distance between semantically similar classes (standard poodle, miniature poodle) can be observed with the use of LS (Shen et al., 2021) \rightarrow LS and KD Compatibility

Müller, R., Kornblith, S., & Hinton, G. E. (2019). When does label smoothing help?. Advances in neural information processing systems, 32. Shen, Z., Liu, Z., Xu, D., Chen, Z., Cheng, K. T., & Savvides, M. (2021). Is Label Smoothing Truly Incompatible with Knowledge Distillation: An Empirical Study. In *ICLR*

Systematic Diffusion in Student

Results : Penultimate Layer Visualization



miniature poodle

submarine

Observation 2. We visualize the student's representations.

Both information erasure in logits' and increase in central distance between semantically similar classes can be observed in the student.

This confirms the transfer of this drawback / benefit from the teacher to the student.

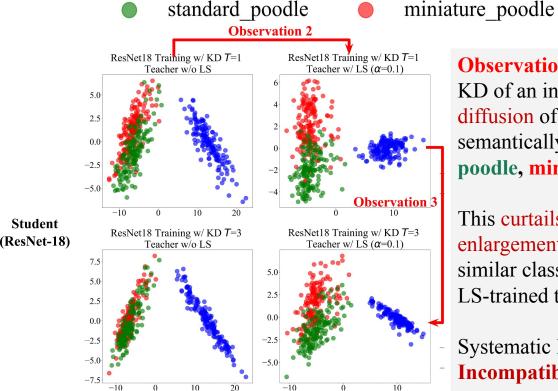
Standard poolle

Miniature poodle

Submarine

Student

Results : Penultimate Layer Visualization



Observation 3 (Systematic Diffusion): KD of an increased *T* causes systematic diffusion of representations between semantically similar classes (standard poodle, miniature poodle).

submarine

This curtails the central distance enlargement benefits between semantically similar classes due to the use of an LS-trained teacher.

Systematic Diffusion \rightarrow LS and KD Incompatibility

Standard poodle

Miniature poodle

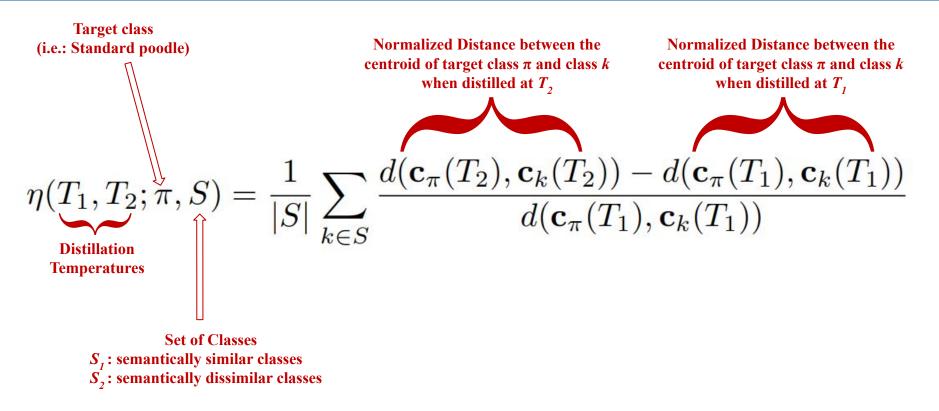
Submarine

Diffusion Index (η) to Quantify Systematic Diffusion

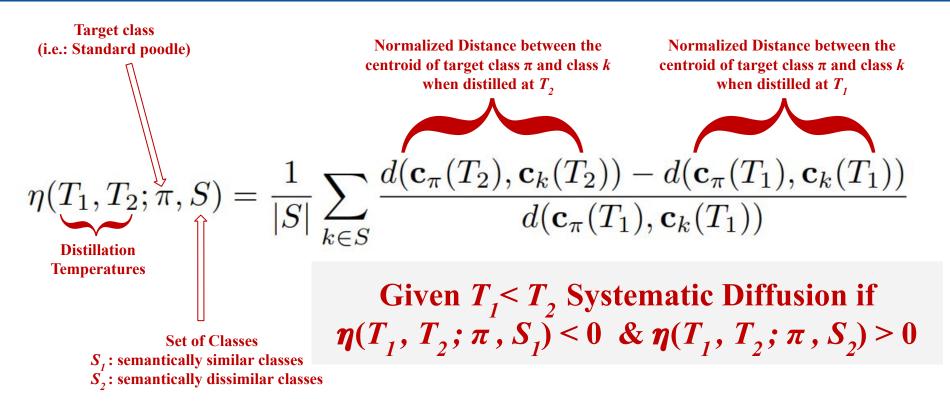
The principal idea of this metric is to quantify the distance change between clusters in the student when distilled from an LS-trained teacher at higher *T*.

The design of the metric is to quantify and verify that the diffusion is systematic: i.e., quantify Observation 3

Diffusion Index (η) to Quantify Systematic Diffusion



Diffusion Index (η) to Quantify Systematic Diffusion



Experiments

Task	Datasets	Architectures
Image Classification	ImageNet-1K	ResNet-18, ResNet-50
Neural Machine Translation	En – De (IWSLT) En – Ru (IWSLT)	Transformers
Fine-grained Image Classification	CUB200-2011	ResNet-18, ResNet-50, ConvNeXt-T
Compact Student Distillation	ImageNet-1K CUB200-2011	EfficientNet-B0 MobileNetV2

Task	Datasets	Architectures
Image Classification	ImageNet-1K	ResNet-18, ResNet-50
Neural Machine Translation	En – De (IWSLT) En – Ru (IWSLT)	Transformers
Fine-grained Image Classification	CUB200-2011	ResNet-18, ResNet-50, ConvNeXt-T
Compact Student Distillation	ImageNet-1K CUB200-2011	EfficientNet-B0 MobileNetV2

We show Top1/ Top5 Accuracies

A. ImageNet-1K : ResNet-50 to ResNet-18, ResNet-50 KD

	T α T	$\alpha = 0.0$	$\alpha = 0.1$
Teacher : ResNet-50	-	76.130/92.862	76.196/93.078
	T = 1	71.547 / 90.297	71.616 / 90.233
Student : ResNet-18	<i>T</i> = 2	71.349 / 90.359	68.428 / 89.139
	<i>T</i> = 3	69.570/89.657	66.570 / 88.631
	<i>T</i> = 64	66.230 / 88.730	65.472 / 89.564

We show Top1/ Top5 Accuracies

A. ImageNet-1K : ResNet-50 to ResNet-18, ResNet-50 KD

	T α	$\alpha = 0.0$	$\alpha = 0.1$
Teacher : ResNet-50	-	76.130/92.862	76.196/93.078
	T = 1	71.547 / 90.297	71.616 / 90.233
Student : ResNet-18	T = 2	71.349/90.359	68.428 / 89.139
	T = 3	69.570 / 89.657	66.570 / 88.631
	T = 64	66.230 / 88.730	65.472 / 89.564

In the presence of an LS-trained teacher, at higher *T*, KD is rendered ineffective due to Systematic Diffusion in student.

We show Top1/ Top5 Accuracies

A. ImageNet-1K : ResNet-50 to ResNet-18, ResNet-50 KD

	T α	$\alpha = 0.0$	$\alpha = 0.1$
Teacher : ResNet-50	-	76.130/92.862	76.196/93.078
	T = 1	71.547 / 90.297	71.616 / 90.233
Student : ResNet-18	T = 2	71.349 / 90.359	68.428 / 89.139
	<i>T</i> = 3	69.570 / 89.657	66.570 / 88.631
	T = 64	66.230 / 88.730	65.472 / 89.564

Rapid degrade in Student performance (Systematic Diffusion) with increased *T* in the presence of LS-trained teacher compared to baseline

We show Top1/ Top5 Accuracies

A. ImageNet-1K : ResNet-50 to ResNet-18, ResNet-50 KD

	T α T	$\alpha = 0.0$	$\alpha = 0.1$
Teacher : ResNet-50	-	76.130/92.862	76.196/93.078
	T = 1	71.547 / 90.297	71.616 / 90.233
Student : ResNet-18	<i>T</i> = 2	71.349 / 90.359	68.428 / 89.139
	<i>T</i> = 3	69.570/89.657	66.570 / 88.631
	<i>T</i> = 64	66.230 / 88.730	65.472 / 89.564

LS-trained teacher with a low-temperature transfer (i.e., T = 1) obtains the best ResNet-18 student

Results (ImageNet-1K): η measurements showing Systematic Diffusion

S_1 and S_2 selected using standard, pre-defined ImageNet knowledge graph (WordNet , Fellbaum, 1998)

Se	t 1 : ResNet	-18 student		
Target class	$Train: S_1$	$Train: S_2$	$Val:S_1$	$Val: S_2$
Chesapeake Bay retriever	-0.392	0.162	-1.082	0.269
curly-coated retriever	-0.578	0.179	-2.024	0.383
flat-coated retriever	-1.729	0.380	-3.320	0.655
golden retriever	- <mark>0.880</mark>	0.228	-2.594	0.555
Labrador retriever	-2.758	0.501	-4.618	0.840

Target class	$Train: S_1$	$Train: S_2$	$Val:S_1$	$Val: S_2$
thunder snake	-2.316	0.376	-3.584	0.511
ringneck snake	-0.463	0.058	-0.757	0.094
hognose snake	-1.528	0.258	-4.067	0.631
water snake	-2.028	0.326	-3.053	0.478
king snake	-2.474	0.521	-4.577	0.840

Set 2 : ResNet-18 student

Fellbaum, C. (ed.) (1998). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press. ISBN: 978-0-262-06197-1

https://observablehg.com/@mbostock/imagenet-hierarchy

S₁ and S₂ selected using standard, pre-defined ImageNet knowledge graph

Set	1: ResNet	-18 student		
Target class	$Train: S_1$	$Train: S_2$	$Val:S_1$	$Val:S_2$
Chesapeake Bay retriever	-0.392	0.162	-1.082	0.269
curly-coated retriever	-0.578	0.179	-2.024	0.383
flat-coated retriever	-1.729	0.380	-3.320	0.655
golden retriever	-0.880	0.228	-2.594	0.555
Labrador retriever	-2.758	0.501	-4.618	0.840
	Real Property and the second se			

|--|

Target class	$Train: S_1$	$Train: S_2$	$Val: S_1$	$Val: S_2$
thunder snake	-2.316	0.376	-3.584	0.511
ringneck snake	-0.463	0.058	-0.757	0.094
hognose snake	-1.528	0.258	-4.067	0.631
water snake	-2.028	0.326	-3.053	0.478
king snake	-2.474	0.521	-4.577	0.840

$$\eta(T_1 = 1, T_2 = 3; \pi, S_1) < 0$$

Fellbaum, C. (ed.) (1998). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press. ISBN: 978-0-262-06197-1 https://observablehg.com/@mbostock/imagenet-hierarchy

LS and KD > Should you

Should you smooth a teacher?

S₁ and S₂ selected using standard, pre-defined ImageNet knowledge graph

Set 1 : ResNet- <u>18 student</u>						
Target class	$Train: S_1$	$Train: S_2$	$Val: S_1$	$Val:S_2$		
Chesapeake Bay retriever	-0.392	0.162	-1.082	0.269		
curly-coated retriever	-0.578	0.179	-2.024	0.383		
flat-coated retriever	-1.729	0.380	-3.320	0.655		
golden retriever	-0.880	0.228	-2.594	0.555		
Labrador retriever	-2.758	0.501	-4.618	0.840		

Set 2 : ResNet-18 student

Target class	$Train: S_1$	$Train: S_2$	$Val:S_1$	$Val: S_2$
thunder snake	-2.316	0.376	-3.584	0.511
ringneck snake	-0.463	0.058	-0.757	0.094
hognose snake	-1.528	0.258	- <mark>4.06</mark> 7	0.631
water snake	-2.028	0.326	-3.053	0.478
king snake	-2.474	0.521	-4.577	0.840

$$\eta(T_1 = 1, T_2 = 3; \pi, S_2) > 0$$

Fellbaum, C. (ed.) (1998). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press. ISBN: 978-0-262-06197-1 https://observablehg.com/@mbostock/imagenet-hierarchy

Should you smooth a teacher?

Revisiting LS and KD Compatibility : Systematic Diffusion is Critical

		Information Erasure (Incompatibility)	Distance enlargement (compatibility)	Systematic Diffusion (Incompatibility)	Conclusion
Müller et al. 2019		LS erases relative information in the logits			LS-trained teacher can hurt KD
Shen et al. 2021		With LS, some relative information in the logits is still retained	LS enlarges the distance between semantically similar classes		Benefits outweigh disadvantages. LS is compatible with KD.
Our	Lower T (i.e.: $T = 1$)	We agree with Shen et al., 2021 in information erasure	We validate the inheritance of distance enlargement in the student (Not shown in prior work)	With KD of lower T (i.e.: T=1), there is lower degree of systematic diffusion. This doesn't curtail the distance enlargement benefit.	At lower levels of systematic diffusion in student, LS is compatible with KD
Our work	Increase of T	The loss of logits relative information cannot be recovered with an increased <i>T</i>	We agree with Shen et al., 2021 observation, but the distance enlargement is curtailed at an increased T .	With KD of increased <i>T</i> , there is systematic diffusion of penultimate representations towards semantically similar classes, curtailing the distance enlargement benefits.	At higher levels of systematic diffusion in student, LS and KD are not compatible.

Revisiting LS and KD Compatibility : Key Takeaways for Practitioners

Systematic Diffusion can be qualitatively observed using Penultimate Layer Visualization and quantitatively measured using our proposed η .

As rule of thumb, we suggest using an LS-trained teacher with a low-temperature transfer (i.e., T = 1) to render high performance students.

Code / Pre-trained models

Thank you