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Few-shot Image Generation (FSIG) Results: Our introduced datasets (B) are more apart to the source. §FRERRPITTVIT T V.V -0\
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! L. ToraetDomain S T TP domain as knowledge selection criterion. Specifically, we modulate the filter on the
Datasets: Babies, Sunglasses, Sketches, Art paintings, FHOBZ 00K - - target domains for a few iterations. We then use Fisher Information (FI) to measure the
LSUN Church/Cars, Haunted House, etc. Babies(32] 249K 147 0274 importance of each filter. The IP step is applied to both generator and discriminator.

Approach: Often tackled with Transfer learning, i.e.,

Sunglasses [32]  2.68K 108 0.347

» The computation cost of [P is lightweight. In practice, we only need ~8 mins for IP.

leveraging a GAN pretrained on a large dataset and adapt it B
to the small target domain. Do (101 K 210 oam * Main Adaptation: If a filter is with Aigh FI, we freeze this filter and only modulate it
Wild [10] 41K 22 oast during adaptation. If a filter is with Jow FI, we instead fine-tune it on the target domain.

Transfer learning Approach for FSIG

» We use a threshold to determine whether a filter is important or unimportant.
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Baselines: .
1. TGAN: simple fine-tune methods; no knowledge preserve; EWC * Therefore, we introduce new mic 7983 0.521
2. FreezeD: freeze low-level layers of the discriminator. setup where the target and the
State-of-the-art (SOTA): source are more apart: e.g., O 0578
1. EWC (Li et al.): Penalize change of weights important on CDC FFHQ to AFHQ-Cat
source domain; DeL i 5648 0.580
2.CDC (Ojha et al.): Preserve distance between generated * We show that, SOTA methods
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3.DCL (Zhao et al.): Maximize the mutual information of knowledge which is non-target- B
generated images before and after adaptation on multi- aware, will transfer unimportant ~ zo-sher - 6
level features. features to the target. ) Grevained
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1. Current SOTA methods consider only source domain in (Curs) 3 418 e Our method AdAM (last row)
knowledge plGSGl:Vathl‘l for adaptatlon, i.c., source-aware; We use a fixed noise input (z) in each column ¢4 address this issue row § g 0s1s
2. None of them is “target - aware” + a0A
Adaptation-Aware Kernel Modulation (AdAM
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Main observation: T for few-shot adaptation BIC | 7461 0.587
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semantic features (e.g., real human face to baby face).
Analysis to confirm this observation: e 115682 0616
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. rce: FFHQ - K, e kernel's know! for : : Kernel to be fine-tuned « State-of-the-art FSIG methods fail when source/target domains Li, Yijun, et al. "Few-shot Image Generation with Elastic
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Our proposed AJAM achieves SOTA on target domains with Zhao, Yunging, et al. "A Closer Look at Few-shot Image
different proximity, both visually and quantitatively. Generation." CVPR. 2022,



