

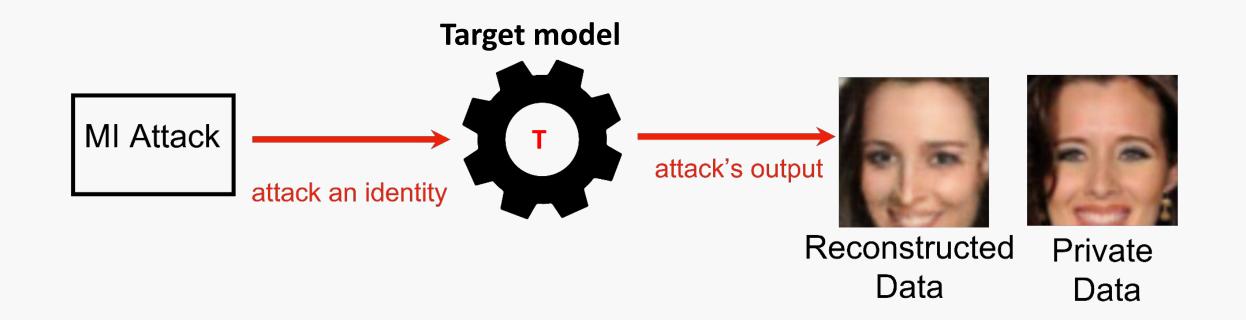
Label-Only Model Inversion Attacks via Knowledge Transfer

Ngoc-Bao Nguyen*1Keshigeyan Chandrasegaran*2‡Milad Abdollahzaden1Ngai-Man Cheung11 Singapore University of Technology and Design (SUTD)2 Stanford University

* These authors contributed equally. [‡] Work done while at SUTD

Our contributions

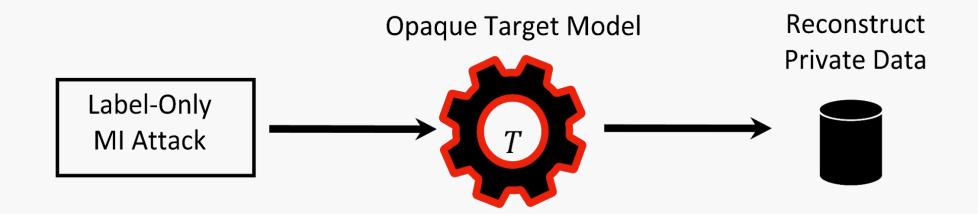
- We propose Label-only Model inversion via Knowledge Transfer (LOKT), a new label-only MI by transferring decision knowledge from the target model to surrogate models and performing white-box attacks on the surrogate models.
- We propose a new T-ACGAN to leverage generative modeling and the target model for effective knowledge transfer.
- We perform analysis to support that our surrogate models are effective proxies for the target model for MI.


Private Training Data Existing SOTA

Our Reconstruction Results

Model Inversion (MI)

Model inversion (MI) attacks aim to infer and reconstruct private training data by abusing access to a model.

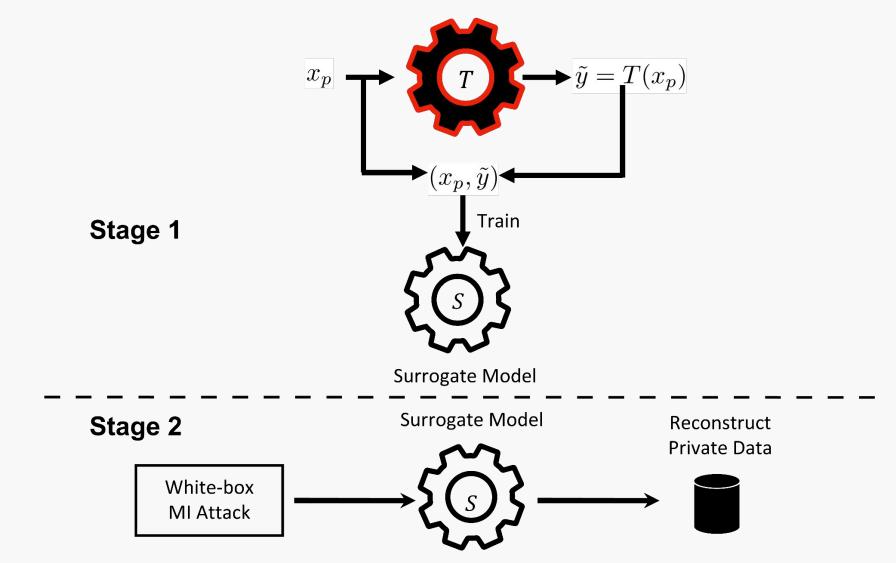


Model Inversion (MI)

We focus on label-only model inversion attack which is the most challenging MI Attack.

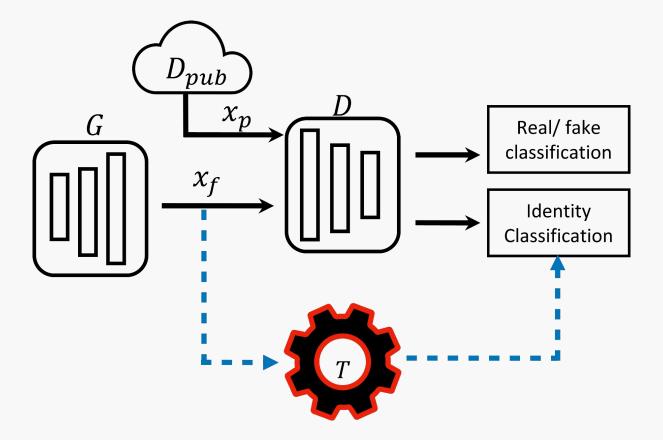
Criteria	Architecture / Parameters	Soft-labels	Hard-labels	Concern reg. Queries	
White-box				Low	
Black-box	×	\checkmark		High	
Label-only	×	×		High	

Existing work on Label-only Model Inversion Attack



SOTA Label-only Model Inversion attacks employ **black-box search on the target model T** to reconstruct training data.

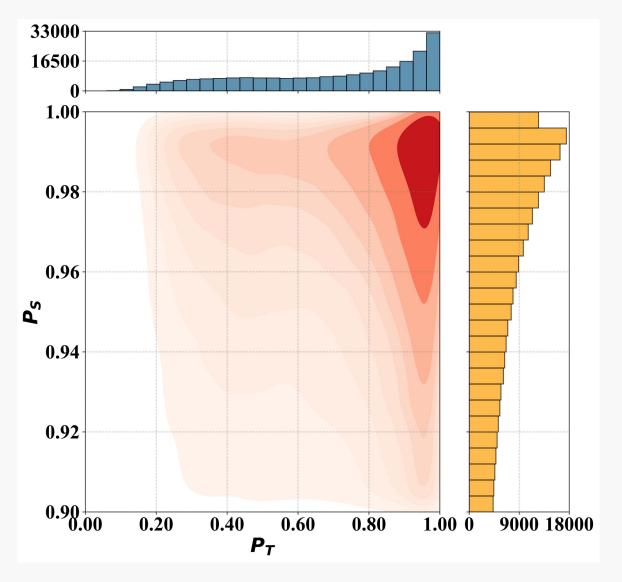
Mostafa et. al. Label-only model inversion attacks via boundary repulsion. In CVPR 2022.


Label-only Model inversion via Knowledge Transfer (LOKT)

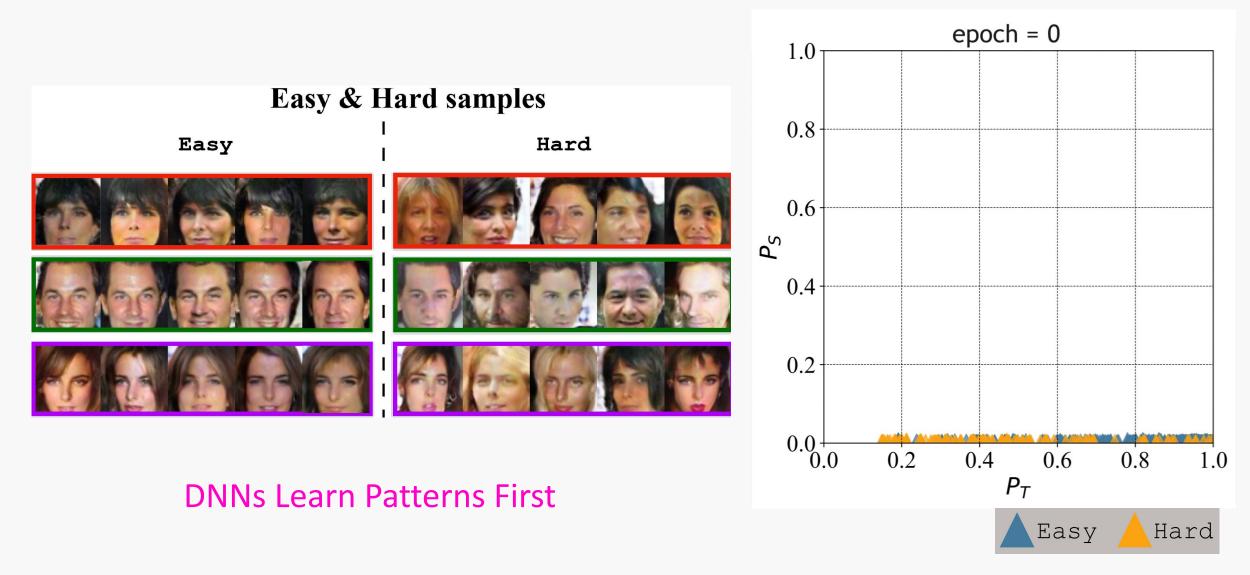
Decision Knowledge Transfer

Casting Label-only MI Attack as a White-box MI Attack

Decision Knowledge Transfer using our T-ACGAN


Decision Knowledge Transfer

$$\mathcal{L}_{D,C} = -E[\log P(s = Fake|x_f)] - E[\log P(s = Real|x_p)] - E[\log P(c = \tilde{y}|x_f)]$$


Analysis for justification of surrogate models

Property P1:

For high-likelihood samples under S, it is likely that they also have high likelihood under T.

Analysis for justification of surrogate models

Devansh et.al. A closer look at memorization in deep networks. In ICML, 2017

Model inversion attack results

					5 <u>6</u>			
	Setup	Attack	Attack acc. \uparrow	KNN dt. \downarrow	Setup	Attack	Attack acc. \uparrow	KNN dt.↓
T = FaceNet64 $\mathcal{D}_{priv} = CelebA$ $\mathcal{D}_{pub} = CelebA$	= FaceNet64	BREPMI	73.93 ± 4.98	1284.41	T = VGG16	BREPMI	57.40 ± 4.92	1376.94
	$\begin{array}{c} C \circ D \\ \textbf{LOKT} & S \\ S_{en} \end{array}$	$\begin{array}{c} 81.00 \pm 4.79 \\ 92.80 \pm 2.59 \\ \textbf{93.93} \pm \textbf{2.78} \end{array}$	1298.63 1207.25 1181.72	$\mathcal{D}_{priv} = \text{CelebA}$ $\mathcal{D}_{pub} = \text{CelebA}$	$\begin{array}{c} C \circ D \\ \textbf{LOKT} & S \\ S_{en} \end{array}$	$\begin{array}{c} 71.33 \pm 4.39 \\ 85.60 \pm 3.03 \\ \textbf{87.27} \pm \textbf{1.97} \end{array}$	1364.47 1252.09 1246.71	
T = IR152 $\mathcal{D}_{priv} = CelebA$ $\mathcal{D}_{pub} = CelebA$	= IR152	BREPMI	71.47 ± 5.32	1277.23	T = FaceNet64	BREPMI	43.00 ± 5.14	1470.55
	= CelebA	$\begin{array}{c} C \circ D \\ \textbf{LOKT} & S \\ S_{en} \end{array}$	$\begin{array}{c} 72.07 \pm 4.03 \\ 89.80 \pm 2.33 \\ \textbf{92.13} \pm \textbf{2.06} \end{array}$	1358.94 1220.00 1206.78	$\mathcal{D}_{priv} = \text{CelebA}$ $\mathcal{D}_{pub} = \text{FFHQ}$	$\begin{array}{c} C \circ D \\ \textbf{LOKT} & S \\ S_{en} \end{array}$	$\begin{array}{r} 43.27 \pm 3.53 \\ 59.13 \pm 2.77 \\ \textbf{62.07} \pm \textbf{3.89} \end{array}$	1516.18 1437.86 1428.04
						0.10		

Conclusion

- We propose Label-only Model inversion via Knowledge Transfer (LOKT), a new label-only MI by transferring decision knowledge from the target model to surrogate models and performing white-box attacks on the surrogate models.
- We propose a new T-ACGAN to leverage generative modeling and the target model for effective knowledge transfer.
- We perform analysis to support that our surrogate models are effective proxies for the target model for MI.

Thank you!

Poster Session Wed 13 Dec 10:45 a.m. CST — 12:45 p.m. CST **Great Hall & Hall B1+B2** #1517

Project page

https://ngoc-nguyen-0.github.io/lokt/