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CNN-generated images (Deepfakes / counterfeits) have become 

indistinguishable from real images

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.
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With rapid improvements in generative modelling, detecting such counterfeits is 

increasingly becoming challenging and critical.

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.
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Out-Of-Distribution (OOD) counterfeit detection is challenging
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Unsuccessful forensic transfer
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Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition


However, a recent class of forensic detectors known as universal detectors (Wang et al., 2020) 

can surprisingly spot counterfeits regardless of generator architectures, loss functions, 


datasets or resolutions.
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Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition


This universal detector (ResNet-50) is trained on a large-scale dataset that consists solely of 

ProGAN-generated images and real images (Wang et al., 2020)
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Universal Detector is a promising direction for OOD counterfeit detection
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Universal Detector is a promising direction for OOD counterfeit detection
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Notable improvements in forensic transfer
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This intriguing cross-model forensic transfer suggests the existence of 

Transferable Forensic Features (T-FF) in universal detectors.

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
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What Transferable Forensic Features (T-FF) are used by 

universal detectors for counterfeit detection?

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
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Our work conducts the first analytical study to discover & understand 

Transferable Forensic Features (T-FF) in universal detectors.

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition


Summary  Color-Robust Detectors  Understanding Transferable Forensic FeaturesDiscovering Transferable Forensic FeaturesTransferable Forensic Features 12



Our Contributions/ Findings

13

Existing interpretable AI methods are not informative to discover T-FF


Develop an explainable AI framework to discover and understand T-FF


• Forensic feature relevance statistic (FF-RS)


• LRP-max visualization


We discover that color is a critical T-FF in universal detectors for counterfeit detection.


Propose a method to train Color-Robust (CR) universal detectors.
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Are existing Interpretability methods capable of discovering T-FF ?

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
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Are existing Interpretability methods capable of discovering T-FF ?
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Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Brock, A., Donahue, J., & Simonyan, K. (2018, September). Large Scale GAN Training for High Fidelity Natural Image Synthesis. In International Conference on Learning Representations.

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision

Bach S, Binder A, Montavon G, Klauschen F, Müller KR, et al. (2015) On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLOS ONE 10(7): e0130140.

ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN

Image
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pcounterfeit ≥ 95 %

for  all these counterfeits
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Pixel-wise explanations of Universal Detector decisions using Guided-GradCAM (GGC) and LRP
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Our Contributions/ Findings
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Existing interpretable AI methods are not informative to discover T-FF


Develop an explainable AI framework to discover and understand T-FF


• Forensic feature relevance statistic (FF-RS)


• LRP-max visualization


We discover that color is a critical T-FF in universal detectors for counterfeit detection.


Propose a method to train Color-Robust (CR) universal detectors.



We study the Feature Space of universal detectors

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
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 Forensic Feature Relevance Statistic (FF-RS) ( )ω

Summary  Color-Robust Detectors  Understanding Transferable Forensic FeaturesDiscovering Transferable Forensic FeaturesTransferable Forensic Features

Which feature maps in universal detectors are responsible for cross-model forensic transfer?
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 Forensic Feature Relevance Statistic (FF-RS) ( )ω
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Which feature maps in universal detectors are responsible for cross-model forensic transfer?


FF-RS (ω) is a scalar ( ) that quantifies the forensic relevance of every feature map. 
[0,1]
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Which feature maps in universal detectors are responsible for cross-model forensic transfer?


FF-RS (ω) is a scalar ( ) that quantifies the forensic relevance of every feature map. 


ω for a feature map quantifies  

[0,1]

positive forensic relevance of the feature map
total unsigned forensic relevance of the entire layer



 [Schematic Diagram] Forensic Feature Relevance Statistic (FF-RS) ( )ω
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……… f(x) = 3

……… f(x) = 3+5-2+1-7+6-5+3+2+3+7-9+5

Forward Pass

Layer-wise Relevance Propagation (LRP)

ω(l = 3, c = 1) =
6
21

= 0.29

l = 1 l = 2 l = 3

ω(l = 3, c = 2) =
0
21

= 0 Calculate FF-RS ( )ω
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Which feature maps in universal detectors are responsible for cross-model forensic transfer?


FF-RS (ω) is a scalar ( ) that quantifies the forensic relevance of every feature map. 


ω for a feature map quantifies  

[0,1]

positive forensic relevance of the feature map
total unsigned forensic relevance of the entire layer

Calculate ω for layer l, channel c

Spatially sum relevances 

Calculate relevance for all neurons using LRP



 Forensic Feature Relevance Statistic (FF-RS) ( )ω
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Large  -> high forensic 

feature relevance


(i.e.: top-k) 

ω

Which feature maps in universal detectors are responsible for cross-model forensic transfer?


FF-RS (ω) is a scalar ( ) that quantifies the forensic relevance of every feature map. 


ω for a feature map quantifies  

[0,1]

positive forensic relevance of the feature map
total unsigned forensic relevance of the entire layer



 [Schematic Diagram] Forensic Feature Relevance Statistic (FF-RS) ( )ω
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……… f(x) = 3

……… f(x) = 3+5-2+1-7+6-5+3+2+3+7-9+5

Forward Pass

Layer-wise Relevance Propagation (LRP)

l = 1 l = 2 l = 3

ω(l = 3, c = 2) =
0
21

= 0 Calculate FF-RS ( )ω

Rank all feature maps using  valuesω

ω(l = 3, c = 1) =
6
21

= 0.29
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Validation of our proposed FF-RS for discovering T-FF

top-k        : Set of T-FF (top-ranked feature maps based on ω values)


random-k : Set of random feature maps used as a control experiment


low-k       : Set of low-ranked feature maps with very small ω values

33

Large  -> high forensic 

feature relevance


(i.e.: top-k) 

ω
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Validation of our proposed FF-RS for discovering T-FF

top-k        : Set of T-FF (top-ranked feature maps based on ω values)


random-k : Set of random feature maps used as a control experiment


low-k       : Set of low-ranked feature maps with very small ω values
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} Feature map dropout is performed 
by suppressing (zeroing out) the 

resulting activations of 
corresponding feature maps

Large  -> high forensic 

feature relevance


(i.e.: top-k) 

ω
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Validation of our proposed FF-RS for discovering T-FF

top-k        : Set of T-FF (top-ranked feature maps based on ω values)


random-k : Set of random feature maps used as a control experiment


low-k       : Set of low-ranked feature maps with very small ω values
} Feature map dropout is performed 

by suppressing (zeroing out) the 
resulting activations of 

corresponding feature maps

ResNet-50 feature map dropout results (Sensitivity assessments)
AP / Acc ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

k = 114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100.0 100.0 100.0 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
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Validation of our proposed FF-RS for discovering T-FF

top-k        : Set of T-FF (top-ranked feature maps based on ω values)


random-k : Set of random feature maps used as a control experiment


low-k       : Set of low-ranked feature maps with very small ω values
} Feature map dropout is performed 

by suppressing (zeroing out) the 
resulting activations of 

corresponding feature maps

k = 114 (<0.5%)

ResNet-50 feature map dropout results (Sensitivity assessments)
AP / Acc ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

k = 114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100.0 100.0 100.0 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
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Validation of our proposed FF-RS for discovering T-FF

top-k        : Set of T-FF (top-ranked feature maps based on ω values)


random-k : Set of random feature maps used as a control experiment


low-k       : Set of low-ranked feature maps with very small ω values
} Feature map dropout is performed 

by suppressing (zeroing out) the 
resulting activations of 

corresponding feature maps

ResNet-50 feature map dropout results (Sensitivity assessments)
AP / Acc ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

k = 114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100.0 100.0 100.0 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4

top-k 69.8 99.4 3.2 55.3 89.4 11.3 56.6 90.6 13.7 55.4 86.4 18.3 61.2 91.4 17.4 72.6 89.4 35.9 71.0 95.0 18.8
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Validation of our proposed FF-RS for discovering T-FF

top-k        : Set of T-FF (top-ranked feature maps based on ω values)


random-k : Set of random feature maps used as a control experiment


low-k       : Set of low-ranked feature maps with very small ω values
} Feature map dropout is performed 

by suppressing (zeroing out) the 
resulting activations of 

corresponding feature maps

ResNet-50 feature map dropout results (Sensitivity assessments)
AP / Acc ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

k = 114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100.0 100.0 100.0 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
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ResNet-50 feature map dropout results (Sensitivity assessments)
AP / Acc ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

k = 114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100.0 100.0 100.0 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
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random-k 100.0 99.9 96.1 98.6 89.4 96.9 98.7 91.4 96.1 88.0 79.4 85.1 96.6 81.0 96.2 97.0 88.0 91.7 98.7 91.9 97.1

low-k 100.0 100.0 100.0 99.1 95.6 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
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Validation of our proposed FF-RS for discovering T-FF

top-k        : Set of T-FF (top-ranked feature maps based on ω values)


random-k : Set of random feature maps used as a control experiment


low-k       : Set of low-ranked feature maps with very small ω values
} Feature map dropout is performed 

by suppressing (zeroing out) the 
resulting activations of 

corresponding feature maps



ResNet-50 feature map dropout results (Sensitivity assessments)
AP / Acc ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

k = 114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100.0 100.0 100.0 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
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FF-RS (ω) successfully quantifies and discovers T-FF

Validation of our proposed FF-RS for discovering T-FF

top-k        : Set of T-FF (top-ranked feature maps based on ω values)


random-k : Set of random feature maps used as a control experiment


low-k       : Set of low-ranked feature maps with very small ω values
} Feature map dropout is performed 

by suppressing (zeroing out) the 
resulting activations of 

corresponding feature maps
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Existing interpretable AI methods are not informative to discover T-FF


Develop an explainable AI framework to discover and understand T-FF


• Forensic feature relevance statistic (FF-RS)


• LRP-max visualization


We discover that color is a critical T-FF in universal detectors for counterfeit detection.


Propose a method to train Color-Robust (CR) universal detectors.



What counterfeit properties are detected by this set of T-FF discovered using FF-RS?

Samples generated using Zero-Insertion based Upsampling Architectural Variant (Chandrasegaran et al., 2021) of Progressive Growing of GAN (Karras et al., 2018)

Chandrasegaran, K., Tran, N. T., & Cheung, N. M. (2021). A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018, February). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In International Conference on Learning Representations.

Wang, S. Y., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020). CNN-generated images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
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We introduce a novel pixel-wise visualization method — LRP-max — for visualizing which pixels in the input space 

correspond to maximum spatial relevance scores for each T-FF.


 


What counterfeit properties are detected by this set of T-FF?
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We introduce a novel pixel-wise visualization method — LRP-max — for visualizing which pixels in the input space 

correspond to maximum spatial relevance scores for each T-FF.


Principal idea : Instead of back-propagating using detector logits, back-propagate from the maximum spatial relevance neuron 
for each T-FF independently.


 


What counterfeit properties are detected by this set of T-FF?
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 [Schematic Diagram] Forensic Feature Relevance Statistic (FF-RS) ( )ω
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……… f(x) = 3

……… f(x) = 3+5-2+1-7+6-5+3+2+3+7-9+5

Forward Pass

Layer-wise Relevance Propagation (LRP)

l = 1 l = 2 l = 3
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ω(l = 3, c = 2) =
0
21

= 0 Calculate FF-RS ( )ω

Rank all feature maps using  valuesω

ω(l = 3, c = 1) =
6
21

= 0.29



 [Schematic Diagram] LRP-max
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……… f(x) = 3

……… f(x) = 3+5-2+1-7+6-5+3+2+3+7-9+5

Forward Pass

LRP-max

l = 1 l = 2 l = 3
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Calculate FF-RS ( )ω

T-FF: Use maximum spatial  
relevance neuron for LRP

Rank all feature maps using  valuesω

ω(l = 3, c = 1) =
6
21

= 0.29
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Maximum spatial relevance neuron

Back-propagate from maximum spatial 
relevance neuron during LRP

We introduce a novel pixel-wise visualization method — LRP-max — for visualizing which pixels in the input space 

correspond to maximum spatial relevance scores for each T-FF.


Principal idea : Instead of back-propagating using detector logits, back-propagate from the maximum spatial relevance neuron 
for each T-FF independently.


 


What counterfeit properties are detected by this set of T-FF?
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Existing interpretable AI methods are not informative to discover T-FF


Develop an explainable AI framework to discover and understand T-FF


• Forensic feature relevance statistic (FF-RS)


• LRP-max visualization


We discover that color is a critical T-FF in universal detectors for counterfeit detection.


Propose a method to train Color-Robust (CR) universal detectors.

Summary  Color-Robust Detectors  Understanding Transferable Forensic FeaturesDiscovering Transferable Forensic FeaturesTransferable Forensic Features



Color is a critical T-FF (Qualitative Studies)

ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
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We introduce a novel pixel-wise visualization method — LRP-max — for visualizing which pixels in the input space 

correspond to maximum spatial relevance scores for each T-FF.


Principal idea : Instead of back-propagating using detector logits, back-propagate from the maximum spatial relevance neuron 
for each T-FF independently.


 




Color is a critical T-FF (Qualitative Studies)

ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN

We qualitatively discover that color is a critical T-FF in universal detectors 

for cross-model forensic transfer

StyleGAN2
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We introduce a novel pixel-wise visualization method — LRP-max — for visualizing which pixels in the input space 

correspond to maximum spatial relevance scores for each T-FF.


Principal idea : Instead of back-propagating using detector logits, back-propagate from the maximum spatial relevance neuron 
for each T-FF independently.
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Color is a critical T-FF (Quantitative Studies)
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Median Counterfeit Probability Analysis based on Color Ablation

pcounterfeit = 0.97 pcounterfeit = 0.96 pcounterfeit = 0.95 pcounterfeit = 0.97 pcounterfeit = ? pcounterfeit = ? pcounterfeit = ? pcounterfeit = ?

We study the change in median counterfeit probability when removing color information (grayscale) from counterfeits.
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Color is a critical T-FF (Quantitative Studies I)

ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
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Median Counterfeit Probability Analysis based on Color Ablation

Color ablation causes the median probability predicted by universal detector to drop by > 89% across all unseen GANs
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Color is a critical T-FF (Quantitative Studies II)

ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
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Median Counterfeit Probability Analysis based on Color Ablation

% Color-conditional ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
ResNet-50 ? ? ? ? ? ? ?

% Color-conditional T-FF (Mood’s median test) based on maximum spatial activation distributions 

Color ablation causes the median probability predicted by universal detector to drop by > 89% across all unseen GANs
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Color is a critical T-FF (Quantitative Studies II)

ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
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Median Counterfeit Probability Analysis based on Color Ablation

% Color-conditional ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
ResNet-50 85.1 74.6 73.7 68.4 86.8 71.1 70.2

% Color-conditional T-FF (Mood’s median test) based on maximum spatial activation distributions 

Color ablation causes the median probability predicted by universal detector to drop by > 89% across all unseen GANs
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Color is a critical T-FF (Quantitative Studies)

ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
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Median Counterfeit Probability Analysis based on Color Ablation

pcounterfeit = 0.97 pcounterfeit = 0.96 pcounterfeit = 0.95 pcounterfeit = 0.97 pcounterfeit = 0.04 pcounterfeit = 0.10 pcounterfeit = 0.00 pcounterfeit = 0.01

We quantitatively show that color is a critical T-FF in universal detectors 

for cross-model forensic transfer

% Color-conditional T-FF (Mood’s median test) based on maximum spatial activation distributions 

% Color-conditional ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
ResNet-50 85.1 74.6 73.7 68.4 86.8 71.1 70.2
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Existing interpretable AI methods are not informative to discover T-FF


Develop an explainable AI framework to discover and understand T-FF


• Forensic feature relevance statistic (FF-RS)


• LRP-max visualization


We discover that color is a critical T-FF in universal detectors for counterfeit detection.


Propose a method to train Color-Robust (CR) universal detectors.
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Idea : Randomly remove color information from samples during training (both real and counterfeits) to manoeuvre detectors to 
learn T-FF that do not substantially rely on color information (Random Grayscaling). 

Applications : Color-Robust (CR) Universal Detectors

57

CR Detector
ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

% Color-conditional ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
ResNet-50 85.1 74.6 73.7 68.4 86.8 71.1 70.2

CR-ResNet-50 55.3 33.3 48.2 31.6 56.1 48.2 39.5

% Color-conditional T-FF (Mood’s median test) based on maximum spatial activation distributions 



T-FF in Color-Robust (CR) Universal Detectors

ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGANStyleGAN2
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Largely correspond to patterns / artifacts


Faintly Colored


Notable patterns include wheels, stripes in zebras



T-FF in Color-Robust (CR) Universal Detectors

ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN

Our explainable AI framework can identify different types of T-FF in addition to color.

StyleGAN2
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Largely correspond to patterns / artifacts


Faintly Colored


Notable patterns include wheels, stripes in zebras



Our Contributions/ Findings
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Existing interpretable AI methods are not informative to discover T-FF


Develop an explainable AI framework to discover and understand T-FF


• Forensic feature relevance statistic (FF-RS)


• LRP-max visualization


We discover that color is a critical T-FF in universal detectors for counterfeit detection.


Propose a method to train Color-Robust (CR) universal detectors.
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Deeper Question

Are CNN-based generative models struggling to accurately reproduce the color distribution of data?

Histopathology Thermal Imaging

(Material Science/ Manufacturing)
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Our Contributions/ Findings
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Existing interpretable AI methods are not informative to discover T-FF


Develop an explainable AI framework to discover and understand T-FF


• Forensic feature relevance statistic (FF-RS)


• LRP-max visualization


We discover that color is a critical T-FF in universal detectors for counterfeit detection.


Propose a method to train Color-Robust (CR) universal detectors.

Code / Pre-trained models: https://keshik6.github.io/transferable-forensic-features/
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We propose a novel Forensic Feature Relevance Statistic (FF-RS) to quantify & discover 

Transferable Forensic Features (T-FF) in universal detectors for counterfeit detection. 


We qualitatively (LRP-max) and quantitatively show that color is a critical Transferable Forensic Feature (T-FF) 

in universal detectors for counterfeit detection


Based on our findings, we propose a simple data augmentation scheme to train Color-Robust (CR) universal detectors


Code / Pre-trained models:

https://keshik6.github.io/transferable-forensic-features/


Summary

https://keshik6.github.io/transferable-forensic-features/

